vim ~/revolveweb/developer.py — zsh
📖 README.md 🐍 developer.py 🗄️ data.sql 📦 projects.py 📧 contact.py
#!/usr/bin/env python3 """
 ██████╗ ███████╗██╗   ██╗ ██████╗ ██╗    ██╗   ██╗███████╗
 ██╔══██╗██╔════╝██║   ██║██╔═══██╗██║    ██║   ██║██╔════╝
 ██████╔╝█████╗  ██║   ██║██║   ██║██║    ██║   ██║█████╗  
 ██╔══██╗██╔══╝  ╚██╗ ██╔╝██║   ██║██║    ╚██╗ ██╔╝██╔══╝  
 ██║  ██║███████╗ ╚████╔╝ ╚██████╔╝███████╗╚████╔╝ ███████╗
 ╚═╝  ╚═╝╚══════╝  ╚═══╝   ╚═════╝ ╚══════╝ ╚═══╝  ╚══════╝
                      W E B
Cloud Infrastructure • Data Pipelines • AI Engineering """ from cloud import AWS, Lambda, S3, DynamoDB from data import Pipelines, ETL, Analytics from ai import MachineLearning, ComputerVision, Inference from backend import APIs, Serverless, Microservices from devops import CICD, Infrastructure, Automation # ═══════════════════════════════════════════════════════════════ # [+] DEVELOPER PROFILE # ═══════════════════════════════════════════════════════════════ @dataclass class Developer: """Cloud & AI Engineer based at Revolve Web""" name: str focus: List[str] mission: str developer = Developer( name="Revolve Web", focus=[ "Cloud infrastructure", "Data pipelines", "AI engineering", ], mission="Design & build scalable AWS systems that transform raw data into intelligent products" ) # ═══════════════════════════════════════════════════════════════ # [+] TECHNICAL STACK # ═══════════════════════════════════════════════════════════════ class AWSServices: """Designing secure, scalable, cost-efficient cloud platforms""" compute = [Lambda EC2 ECS Step Functions API Gateway] storage = [S3 DynamoDB Aurora ElastiCache] messaging = [SQS Firehose EventBridge] networking = [VPC CloudFront Route53] security = [Cognito IAM Secrets Manager] observability = [CloudWatch CloudTrail X-Ray] class DataAnalytics: """Building ingestion pipelines, analytics layers, query systems""" stack = [ Athena Big Data ETL Pipelines Automation ] def transform(self, df: pd.DataFrame) -> pd.DataFrame: """ETL transformation pipeline""" return df.pipe(self.clean).pipe(self.enrich) class AIEngineering: """Training, deploying, optimizing ML models for production""" platform = [SageMaker Bedrock Model Training] models = [Random Forest Feature Engineering Training Pipelines] computer_vision = [YOLO SAM Object Detection] deployment = [Real-time Inference Batch Processing] def train(self, X, y) -> Model: """Feature engineering + model training pipeline""" features = self.engineer_features(X) return RandomForestClassifier().fit(features, y) def detect(self, image) -> List["Detection"]: """Run YOLO/SAM inference pipeline""" return self.model.predict(image) class InternalTooling: """Building web tools for ML ops and internal workflows""" annotation = [Labeling Tools Training Data QA Workflows] dashboards = [Ops Dashboards Monitoring Alerting] admin = [Admin Panels Internal Apps Backoffice] # ═══════════════════════════════════════════════════════════════ # [+] SPECIALIZATION # ═══════════════════════════════════════════════════════════════ """ Automation-heavy architectures: • Serverless APIs with auto-scaling • Scheduled data pipelines • AI model training workflows • Production inference systems Recent work includes: → Computer-vision pipelines for real-time image detection → Analytics platforms over high-volume device data → Scalable SaaS backends → Web-based annotation tools for ML training data → Ops dashboards for infrastructure monitoring """ if __name__ == "__main__": print(developer) # EOF
NORMAL developer.py [+]
python utf-8 ln 1, col 1 100%
: e ~/revolveweb/developer.py